The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263161 Positive values of n such that A000071(n+2) is divisible by A000217(n). 2
 1, 240, 600, 768, 1008, 1200, 1320, 1800, 2160, 2688, 2736, 3000, 3360, 3888, 4800, 5280, 5520, 6120, 6479, 6480, 6720, 6840, 7320, 7680, 8208, 8640, 9000, 9600, 9720, 10368, 11160, 11663, 12240, 12288, 13200, 13248, 13440, 13680, 14400, 15120, 15360, 15456, 16560, 18048 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Interestingly, the minimum value of a(n) - a(n-1) is 1. Is there a maximum value of a(n) - a(n-1)? From Robert Israel, Oct 19 2015: (Start) n is in the sequence if either n is odd and A001175(n) and A001175((n+1)/2) both divide n+1, or n is even and A001175(n/2) and A001175(n+1) both divide n. Most of the terms of the sequence appear to fall in these categories. The first two that do not are 15456 and 41640. In particular, if n = 2^j * 3^k * 5^m with j >= 4, k >= 1 and m >= 1, and n+1 is prime, then n is in the sequence. There are believed to be infinitely many numbers of this form. The first few are 240, 1200, 2160, 4800, 6480, 7680, 8640, 9600, 14400, 15360. (End) LINKS Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 EXAMPLE For n = 1, A000071(1+2) = 1 is divisible by A000217(1) = 1. MAPLE fmod:= proc(a, b) local A, t; uses LinearAlgebra[Modular]; if b < 4295022903 then t:= integer[8] else t:= integer fi; A:= Mod(b, <<1, 1>|<1, 0>>, t); MatrixPower(b, A, a)[1, 2]; end proc: filter:= n -> (fmod(n+2, n*(n+1)/2) = 1): filter(1):= true: select(filter, [\$1..10^5]); # Robert Israel, Oct 19 2015 MATHEMATICA fQ[n_] := Mod[Fibonacci[n + 2] - 1, n (n + 1)/2] == 0; Select[Range@20000, fQ] (* Bruno Berselli, Oct 19 2015 - after Robert G. Wilson v in A263225 *) PROG (PARI) for(n=1, 20000, if((fibonacci(n+2)-1) % (n*(n+1)/2) == 0, print1(n", "))); (PARI) is(n)=((Mod([1, 1; 1, 0], n*(n+1)/2))^(n+2))[1, 2]==1 \\ Charles R Greathouse IV, Oct 19 2015 (Magma) [n: n in [1..20000] | IsDivisibleBy(Fibonacci(n+2)-1, n*(n+1) div 2)]; // Bruno Berselli, Oct 19 2015 CROSSREFS Cf. A000045, A000071, A000217, A001175, A263225. Sequence in context: A063372 A070123 A119659 * A268772 A202196 A060663 Adjacent sequences: A263158 A263159 A263160 * A263162 A263163 A263164 KEYWORD nonn AUTHOR Altug Alkan, Oct 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 11:12 EDT 2024. Contains 372788 sequences. (Running on oeis4.)