login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A263225
Positive values of n such that A027961(n) is divisible by A000217(n).
1
1, 60, 240, 600, 660, 768, 1008, 1200, 1320, 1800, 1860, 2160, 2688, 2736, 3000, 3300, 3360, 3888, 4620, 4800, 5280, 5520, 5568, 6120, 6480, 6720, 6840, 7320, 7680, 8208, 8640, 9000, 9600, 9720, 10368, 11160, 12240, 12288, 13200, 13248, 13440, 13680, 13868, 14400, 15120, 15360
OFFSET
1,2
COMMENTS
Is there a maximum value of a(n) - a(n-1)?
A263161 is not a subsequence although they have many common terms.
Terms that are not congruent to 0 (mod 6): 1, 13868, 16016, 34988, 158252, 196412, 313988, 1287788, 2056748, 2212412, 2542028, 2847260, 2951708, 6117548, 7538108, 7756988, 9056732, 9865628, ... . - Robert G. Wilson v, Oct 15 2015
EXAMPLE
For n = 1, A027961(1) = 1 is divisible by A000217(1) = 1.
For n = 60, A027961(60) = 9062201101800 = 1830*4952022460, therefore it is divisible by A000217(60) = 1830.
MATHEMATICA
fQ[n_] := Mod[ Fibonacci[n + 1] + Fibonacci[n + 3] - 3, n (n + 1)/2] == 0; Select[ Range@ 16000, fQ] (* Robert G. Wilson v, Oct 15 2015 *)
PROG
(PARI) for(n=1, 20000, if((fibonacci(n+3) + fibonacci(n+1)-3) % (n*(n+1)/2) == 0, print1(n", ")));
(Magma) [n: n in [1..20000] | IsDivisibleBy(Lucas(n+2)-3, n*(n+1) div 2)]; // Bruno Berselli, Oct 19 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Oct 12 2015
STATUS
approved