OFFSET
1,2
FORMULA
Representation as a sum of infinite series of special values of Meijer G functions, a(n) = Sum_{k>=0} MeijerG([[1],[]],[[1+k,1+k,1+k],[]],1)) k^n/k!. The Meijer G functions in the above formula cannot be represented through any other special function.
a(n) ~ n!^3. - Vaclav Kotesovec, Jul 12 2018
MAPLE
# This program is intended for quick evaluation of a(n)
with(combinat):
a:= n-> add(stirling2(n, k)*((k)!)^3, k=1..n):
seq(a(n), n=1..15);
# Maple program for the evaluation and verification of the infinite series representation:
a:= n-> evalf(sum(k^n*evalf(MeijerG([[1], []], [[1+k, 1+k, 1+k], []], 1))/k!, k=0..infinity)); # n=1, 2, ... .
# This infinite series is slowly converging and the use of the above formula will presumably not give the result in a reasonable time. Instead it is practical to replace the upper summation limit k = infinity by some kmax, say kmax = 5000. For example, this yields for a(3) = 241 the approximation 240.99999999948 in about 90 sec. Increasing kmax improves this approximation.
MATHEMATICA
Table[Sum[StirlingS2[n, k] ((k)!)^3, {k, n}], {n, 15}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson and Katarzyna Gorska, Oct 11 2015
STATUS
approved