OFFSET
1,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..140
FORMULA
From Vaclav Kotesovec, Jan 08 2019: (Start)
a(n) ~ -(-1)^n * 2^(2*n - 3/2) * n^(n+2) / exp(n).
Recurrence: (14*n - 27)*a(n) = -8*(n-1)*(7*n + 4)*a(n-1) - 36*(2*n - 3)*a(n-2).
(End)
EXAMPLE
From Klaus Brockhaus, Apr 28 2010: (Start)
a(5) = determinant(A) = 181440 where A is the matrix
[ 0 3 8 15 24]
[ 3 0 5 12 21]
[ 8 5 0 7 16]
[15 12 7 0 9]
[24 21 16 9 0] (End)
MAPLE
(Conjectured to give the same sequence, apart from signs): a:=n->sum((count(Permutation(n*2-1), size=n+1)), j=0..n)/2: seq(a(n), n=1..16); # Zerinvary Lajos, May 03 2007
MATHEMATICA
A[i_, j_] := Abs[i^2 - j^2]; a[n_] := Det[Table[A[i, j], {i, n}, {j, n}]]; Table[a[n], {n, 44}] (* José María Grau Ribas, Apr 17 2010 *)
PROG
(Magma) [ Determinant( SymmetricMatrix( &cat[ [ Abs(i^2-j^2): j in [1..i] ]: i in [1..n] ] ) ): n in [1..15] ]; // Klaus Brockhaus, Apr 28 2010
(PARI) a(n) = matdet(matrix(n, n, i, j, abs(i^2-j^2))); \\ Michel Marcus, Aug 14 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 24 2003
EXTENSIONS
More terms from José María Grau Ribas, Apr 17 2010
Edited by N. J. A. Sloane, Apr 21 2010 at the suggestion of R. J. Mathar
More terms from Michel Marcus, Aug 14 2017
STATUS
approved