login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263026
a(n) = Sum_{k=1..n} stirling2(n,k)*((k+1)!)^3/8.
1
1, 28, 1810, 226558, 48859606, 16717044358, 8536211225830, 6206816010688678, 6191950081736354086, 8223501207813329312038, 14182148054223247947725350, 31102596462109513014876988198, 85207893723061275473574262742566, 287156553366174285430392015701185318, 1174632657911183483067648902342293048870
OFFSET
1,2
FORMULA
Representation as a sum of infinite series of special values of Meijer G functions, a(n) = (1/8) Sum_{k>=0} MeijerG([[1-k],[]],[[2,2,2],[]],1)) k^n/k!. The Meijer G functions in the above formula cannot be represented through any other special function.
MAPLE
# This program is intended for quick evaluation of a(n)
with(combinat):
a:= n-> add(stirling2(n, k)*((k+1)!)^3, k=1..n)/8:
seq(a(n), n=1..15);
# Maple program for the evaluation and verification of the infinite series representation:
a:= n-> evalf(sum(k^n*evalf(MeijerG([[1-k], []], [[2, 2, 2], []], 1))/k!, k=0..infinity)/8); # n=1, 2, ... .
# This infinite series is slowly converging and the use of above formula will presumably not give the result in a reasonable time. Instead it is practical to replace the upper summation limit k = infinity by some kmax, say kmax = 6000. For example this yields for a(4) = 226558 the approximation 226557.9980714 in about 100 sec. Increasing kmax improves this approximation.
MATHEMATICA
Table[Sum[StirlingS2[n, k] ((k + 1)!)^3/8, {k, n}], {n, 15}] (* Michael De Vlieger, Oct 09 2015 *)
CROSSREFS
Sequence in context: A182400 A333125 A197438 * A294192 A202811 A285749
KEYWORD
nonn
AUTHOR
Karol A. Penson and Katarzyna Gorska, Oct 08 2015
STATUS
approved