OFFSET
1,2
COMMENTS
It appears that for all n>1 the last digit of a(n) is 6.
FORMULA
Representation as a sum of infinite series of special values of hypergeometric functions of type 2F0, in Maple notation:
a(n) = sum(k^n*(k+1)!*(k+3)!*hypergeom([k+2,k+4],[],-1)/k!, k=1..infinity)/48, n=1,2,... .
a(n) ~ exp(1/2) * (n+1)! * (n+3)! / 48. - Vaclav Kotesovec, Oct 05 2015
MAPLE
with(combinat): a:= n-> sum(stirling2(n, k)*(k+1)!*(k+3)!, k=1..n)/48: seq(a(n), n=1..20);
MATHEMATICA
Table[Sum[StirlingS2[n, k]*(k+1)!*(k+3)!, {k, 1, n}]/48, {n, 1, 20}] (* Vaclav Kotesovec, Oct 05 2015 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson and Katarzyna Gorska, Oct 02 2015
STATUS
approved