login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A261833
a(n) = sum(stirling2(n,k)*(k+1)!*(k+3)!,k=1..n)/48.
3
1, 16, 406, 14866, 740026, 48026266, 3937533706, 397912444666, 48589663862026, 7053101481134266, 1200393616793282506, 236747809664852265466, 53564655768153719942026, 13780851677757681289022266, 4000515700684222714620799306, 1301419578177153109817779142266, 471541578407011294721978551670026
OFFSET
1,2
COMMENTS
It appears that for all n>1 the last digit of a(n) is 6.
FORMULA
Representation as a sum of infinite series of special values of hypergeometric functions of type 2F0, in Maple notation:
a(n) = sum(k^n*(k+1)!*(k+3)!*hypergeom([k+2,k+4],[],-1)/k!, k=1..infinity)/48, n=1,2,... .
a(n) ~ exp(1/2) * (n+1)! * (n+3)! / 48. - Vaclav Kotesovec, Oct 05 2015
MAPLE
with(combinat): a:= n-> sum(stirling2(n, k)*(k+1)!*(k+3)!, k=1..n)/48: seq(a(n), n=1..20);
MATHEMATICA
Table[Sum[StirlingS2[n, k]*(k+1)!*(k+3)!, {k, 1, n}]/48, {n, 1, 20}] (* Vaclav Kotesovec, Oct 05 2015 *)
CROSSREFS
Sequence in context: A301447 A374881 A202733 * A172205 A209362 A338800
KEYWORD
nonn
AUTHOR
Karol A. Penson and Katarzyna Gorska, Oct 02 2015
STATUS
approved