The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263162 Number of lattice paths starting at {n}^4 and ending when any component equals 0, using steps that decrement one or more components by one. 2
 1, 15, 2101, 717795, 328504401, 172924236255, 98788351385893, 59547100211425779, 37279994808479614465, 24006888102075722880975, 15800133137207909144690421, 10580854797781352259168325347, 7186571606168294602440625922385, 4938826696886704892539811529645855 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..263 (terms 0..170 from Alois P. Heinz) FORMULA a(n) ~ c * d^n / (Pi^(3/2) * n^(3/2)), where d = 195 + 138*sqrt(2) + 4*sqrt(4756 + 3363*sqrt(2)) = 780.279406806795145659... and c = sqrt(112232 - 176706*sqrt(2) + sqrt(-24823369828 + 32297875299*sqrt(2)))/2744 = 0.02991158822483794318293134... . - Vaclav Kotesovec, Nov 28 2016 MAPLE g():= seq(convert(n, base, 2)[1..4], n=17..31): b:= proc(l) option remember;       `if`(l[1]=0, 1, add(b(sort(l-h)), h=g()))     end: a:= n-> b([n\$4]): seq(a(n), n=0..16); MATHEMATICA g[] = Table[Reverse[IntegerDigits[n, 2]][[;; 4]], {n, 2^4 + 1, 2^5 - 1}]; b[l_] := b[l] = If[l[[1]] == 0, 1, Sum[b[Sort[l - h]], {h, g[]}]]; a[n_] := b[Table[n, {4}]]; a /@ Range[0, 16] (* Jean-François Alcover, Apr 25 2020, after Alois P. Heinz *) CROSSREFS Column k=4 of A263159. Cf. A263064. Sequence in context: A199098 A208784 A126681 * A232196 A222881 A229844 Adjacent sequences:  A263159 A263160 A263161 * A263163 A263164 A263165 KEYWORD nonn AUTHOR Alois P. Heinz, Oct 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 09:30 EDT 2022. Contains 353908 sequences. (Running on oeis4.)