login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262718 a(n) = (n+1)^n - 2*(n^n) + (n-1)^n. 0
0, 0, 2, 18, 194, 2550, 39962, 730002, 15257090, 359376750, 9424209002, 272385029466, 8604312602690, 294957765448710, 10906288759973882, 432701819402940450, 18336112083960655874, 826578941145375829470, 39497618599385891373002, 1994276034034710498109674 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Obviously, a(n) is always an even number. - Altug Alkan, Sep 28 2015

LINKS

Table of n, a(n) for n=0..19.

FORMULA

E.g.f.: A(x) = B'(x)*(1-x/B(x))^2, where B(x) is g.f. of A000169.

a(n) = Sum{k=1..n} (k!*binomial(n-1,k-2)*stirling2(n,k)), n>0, a(0)=0.

a(n) = 2*(A062024(n) - A000312(n)). - Michel Marcus, Sep 28 2015

MATHEMATICA

Join[{0}, Table[(n + 1)^n - 2 (n^n) + (n - 1)^n, {n, 30}]] (* Vincenzo Librandi, Sep 28 2015 *)

PROG

(Maxima)

B(x):=-lambert_w(-x);

makelist(n!*coeff(taylor(diff(B(x), x)*(1-x/B(x))^2, x, 0, 20), x, n), n, 0, 10);

(PARI) a(n) = (n+1)^n - 2*(n^n) + (n-1)^n;

vector(30, n, a(n-1)) \\ Altug Alkan, Sep 28 2015

(MAGMA) [(n+1)^n - 2*(n^n) + (n-1)^n: n in [0..30]]; // Vincenzo Librandi, Sep 28 2015

CROSSREFS

Cf. A000169, A000312, A062024.

Sequence in context: A155542 A157765 A156341 * A210989 A116072 A266518

Adjacent sequences:  A262715 A262716 A262717 * A262719 A262720 A262721

KEYWORD

nonn,easy

AUTHOR

Vladimir Kruchinin, Sep 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 08:10 EDT 2021. Contains 347577 sequences. (Running on oeis4.)