login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262718
a(n) = (n+1)^n - 2*(n^n) + (n-1)^n.
0
0, 0, 2, 18, 194, 2550, 39962, 730002, 15257090, 359376750, 9424209002, 272385029466, 8604312602690, 294957765448710, 10906288759973882, 432701819402940450, 18336112083960655874, 826578941145375829470, 39497618599385891373002, 1994276034034710498109674
OFFSET
0,3
COMMENTS
Obviously, a(n) is always an even number. - Altug Alkan, Sep 28 2015
FORMULA
E.g.f.: A(x) = B'(x)*(1-x/B(x))^2, where B(x) is g.f. of A000169.
a(n) = Sum{k=1..n} (k!*binomial(n-1,k-2)*stirling2(n,k)), n>0, a(0)=0.
a(n) = 2*(A062024(n) - A000312(n)). - Michel Marcus, Sep 28 2015
MATHEMATICA
Join[{0}, Table[(n + 1)^n - 2 (n^n) + (n - 1)^n, {n, 30}]] (* Vincenzo Librandi, Sep 28 2015 *)
PROG
(Maxima)
B(x):=-lambert_w(-x);
makelist(n!*coeff(taylor(diff(B(x), x)*(1-x/B(x))^2, x, 0, 20), x, n), n, 0, 10);
(PARI) a(n) = (n+1)^n - 2*(n^n) + (n-1)^n;
vector(30, n, a(n-1)) \\ Altug Alkan, Sep 28 2015
(Magma) [(n+1)^n - 2*(n^n) + (n-1)^n: n in [0..30]]; // Vincenzo Librandi, Sep 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Sep 28 2015
STATUS
approved