OFFSET
0,1
COMMENTS
31*a(n) is a square.
In general, Sum_{i>=0} 1/m^(2*i+1) = m/(m^2-1) when |m|>1. In this case, Sum_{i>=0} 1/a(i) = 31/960. [Bruno Berselli, Oct 07 2015]
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..250
Index entries for linear recurrences with constant coefficients, signature (961).
FORMULA
G.f.: 31/(1 - 961*x).
a(n) = 961*a(n-1).
MATHEMATICA
31^Range[1, 30, 2]
PROG
(Magma) [31^(2*n+1): n in [0..15]];
(PARI) Vec(31/(1 - 961*x) + O(x^30)) \\ Michel Marcus, Oct 07 2015
(PARI) vector(15, n, n--; 31^(2*n+1)) \\ Bruno Berselli, Oct 07 2015
(Sage) [31^(2*n+1) for n in (0..15)] # Bruno Berselli, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 07 2015
STATUS
approved