login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 31^(2*n+1).
2

%I #15 Sep 08 2022 08:46:14

%S 31,29791,28629151,27512614111,26439622160671,25408476896404831,

%T 24417546297445042591,23465261991844685929951,

%U 22550116774162743178682911,21670662219970396194714277471,20825506393391550743120420649631,20013311644049280264138724244295391

%N a(n) = 31^(2*n+1).

%C 31*a(n) is a square.

%C In general, Sum_{i>=0} 1/m^(2*i+1) = m/(m^2-1) when |m|>1. In this case, Sum_{i>=0} 1/a(i) = 31/960. [_Bruno Berselli_, Oct 07 2015]

%H G. C. Greubel, <a href="/A262716/b262716.txt">Table of n, a(n) for n = 0..250</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (961).

%F G.f.: 31/(1 - 961*x).

%F a(n) = 961*a(n-1).

%t 31^Range[1, 30, 2]

%o (Magma) [31^(2*n+1): n in [0..15]];

%o (PARI) Vec(31/(1 - 961*x) + O(x^30)) \\ _Michel Marcus_, Oct 07 2015

%o (PARI) vector(15, n, n--; 31^(2*n+1)) \\ _Bruno Berselli_, Oct 07 2015

%o (Sage) [31^(2*n+1) for n in (0..15)] # _Bruno Berselli_, Oct 07 2015

%Y Second bisection of A009975 (powers of 31).

%Y Cf. similar sequences listed in A262715.

%K nonn,easy

%O 0,1

%A _Vincenzo Librandi_, Oct 07 2015