login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262713 Numbers k such that the sum of digits of k^2 is 10. 2
8, 19, 35, 46, 55, 71, 80, 145, 152, 179, 190, 251, 332, 350, 361, 449, 451, 460, 548, 550, 649, 710, 800, 1450, 1520, 1790, 1900, 2510, 3320, 3500, 3610, 4490, 4499, 4510, 4600, 5480, 5500, 6490, 7100, 8000, 14500, 15200, 17900, 19000, 20249, 20251, 24499 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
From Altug Alkan, Sep 29 2015: (Start)
Subsequence of A001651.
If a(n)+1 mod 9 != 0 then a(n)-1 mod 9 = 0;
if a(n)-1 mod 9 != 0 then a(n)+1 mod 9 = 0;
a(n)^2 - 1 mod 9 = 0. (End)
A135027(n)*10^k is a term for all n > 0, k >= 0. - Michael S. Branicky, Aug 19 2021
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..244
Michael S. Branicky, Python program
EXAMPLE
19 is in sequence because 19^2 = 361 and 3+6+1 = 10.
MATHEMATICA
Select[Range[10^5], Total[IntegerDigits[#^2]] == 10 &]
PROG
(Magma) [n: n in [1..3*10^4] | &+Intseq(n^2) eq 10 ];
(PARI) for(n=1, 1e6, if (sumdigits(n^2) == 10, print1(n", "))) \\ Altug Alkan, Sep 28 2015
(Python) # See linked program to go to larger numbers
def ok(n): return sum(map(int, str(n*n))) == 10
print(list(filter(ok, range(25000)))) # Michael S. Branicky, Aug 19 2021
CROSSREFS
Cf. similar sequences listed in A262711.
Sequence in context: A146222 A140672 A230098 * A135027 A158916 A045557
KEYWORD
nonn,base
AUTHOR
Vincenzo Librandi, Sep 28 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 13:14 EST 2023. Contains 367591 sequences. (Running on oeis4.)