login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262717
a(n) = (n-1)*binomial(3*n-2,n)/(2*n-1)+(n+1)*binomial(3*n,n)/(2*n+1)-binomial(3*n-1,n).
1
1, 0, 1, 6, 35, 208, 1260, 7752, 48279, 303600, 1924065, 12271350, 78676884, 506662016, 3275052040, 21238169904, 138111313215, 900331830048, 5881813095795, 38499031112850, 252423322176795, 1657580519271600, 10899847657028400, 71764700685918240
OFFSET
0,4
FORMULA
G.f. A(x) = 1+B'(x)*(1-x/B(x))^2, where B(x)/x is g.f. of A001764.
a(n) = Sum_{k=1..n}(k*binomial(n-1,k-2)*binomial(2*n,n-k))/n, n>0, a(0)=1.
D-finite with recurrence 2*n*(n-2)*(2*n+1)*(n+2)*a(n) -3*(n-1)*(n+3)*(3*n-4)*(3*n-2)*a(n-1)=0. - R. J. Mathar, Mar 12 2017
MATHEMATICA
Join[{0}, Table[(n - 1) Binomial[3 n - 2, n]/(2 n - 1) + (n + 1)Binomial[3 n, n]/(2 n + 1) - Binomial[3 n - 1, n], {n, 30}]] (* Vincenzo Librandi, Sep 28 2015 *)
PROG
(Maxima)
A(x):=x*(2/sqrt(3*x))*sin((1/3)*asin(sqrt(27*x/4)));
taylor(diff(A(x), x, 1)*(1-x/A(x))^2, x, 0, 20);
(Magma) [0] cat [(n-1)*Binomial(3*n-2, n)/(2*n-1)+(n+1)*Binomial(3*n, n)/(2*n+1)-Binomial(3*n-1, n): n in [1..30]]; // Vincenzo Librandi, Sep 28 2015
(PARI) a(n) = (n-1)*binomial(3*n-2, n)/(2*n-1)+(n+1)*binomial(3*n, n)/(2*n+1)-binomial(3*n-1, n);
vector(50, n, a(n-1)) \\ Altug Alkan, Sep 28 2015
CROSSREFS
Cf. A001764.
Sequence in context: A180033 A354134 A260770 * A144638 A291246 A117671
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Sep 28 2015
STATUS
approved