login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157765
Expansion of (2 - 2*x) / (1 - 10*x - 7*x^2).
1
2, 18, 194, 2066, 22018, 234642, 2500546, 26647954, 283983362, 3026369298, 32251576514, 343700350226, 3662764537858, 39033547830162, 415974830066626, 4432983135477394, 47241655165240322, 503447433600744978, 5365165922164132034, 57175791256846535186
OFFSET
0,1
LINKS
Tomislav Došlić and Frode Måløy, Chain hexagonal cacti: Matchings and independent sets, Discr. Math., 310 (2010), 1676-1690.
FORMULA
From Colin Barker, Nov 25 2017: (Start)
a(n) = ((5-4*sqrt(2))^n*(-1+sqrt(2)) + (1+sqrt(2))*(5+4*sqrt(2))^n) / sqrt(2).
a(n) = 10*a(n-1) + 7*a(n-2) for n > 1.
(End)
MATHEMATICA
CoefficientList[Series[(2-2x)/(1-10x-7x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{10, 7}, {2, 18}, 30] (* Harvey P. Dale, Feb 25 2020 *)
PROG
(PARI) Vec(2*(1 - x) / (1 - 10*x - 7*x^2) + O(x^40)) \\ Colin Barker, Nov 25 2017
CROSSREFS
Sequence in context: A052623 A362992 A155542 * A156341 A262718 A210989
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 22 2010
STATUS
approved