Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 25 2020 17:54:28
%S 2,18,194,2066,22018,234642,2500546,26647954,283983362,3026369298,
%T 32251576514,343700350226,3662764537858,39033547830162,
%U 415974830066626,4432983135477394,47241655165240322,503447433600744978,5365165922164132034,57175791256846535186
%N Expansion of (2 - 2*x) / (1 - 10*x - 7*x^2).
%H Colin Barker, <a href="/A157765/b157765.txt">Table of n, a(n) for n = 0..900</a>
%H Tomislav Došlić and Frode Måløy, <a href="http://dx.doi.org/10.1016/j.disc.2009.11.026">Chain hexagonal cacti: Matchings and independent sets</a>, Discr. Math., 310 (2010), 1676-1690.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10, 7).
%F From _Colin Barker_, Nov 25 2017: (Start)
%F a(n) = ((5-4*sqrt(2))^n*(-1+sqrt(2)) + (1+sqrt(2))*(5+4*sqrt(2))^n) / sqrt(2).
%F a(n) = 10*a(n-1) + 7*a(n-2) for n > 1.
%F (End)
%t CoefficientList[Series[(2-2x)/(1-10x-7x^2),{x,0,30}],x] (* or *) LinearRecurrence[{10,7},{2,18},30] (* _Harvey P. Dale_, Feb 25 2020 *)
%o (PARI) Vec(2*(1 - x) / (1 - 10*x - 7*x^2) + O(x^40)) \\ _Colin Barker_, Nov 25 2017
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, May 22 2010