OFFSET
1,1
COMMENTS
Primes Q = n^16 + 2^16 only for odd n note: Q is divisible by 97 if n = 97k +- 48, n = 97k +- 50, n = 97k +- 66, n = 97k +- 70, n = 97k +- 78, n = 97k +- 84, n = 97k +- 90, n = 97k +- 92 of course there are similar rules for each prime divisor.
LINKS
Muniru A Asiru, Table of n, a(n) for n = 1..2915
EXAMPLE
For n=89: 89^16 + 2^16 = 15496731425178936435099327796097 is prime and 89 is prime too.
For n=3: 3 is (first odd) prime but 3^16 + 2^16 = 43112257 = 3041*14177 (not prime).
For n=85: 85^16 + 2^16 = 7425108623606394726715087956161 is prime too, but 85 is not.
MAPLE
select(p->isprime(p) and isprime(p^16+2^16), [$1..10^4]); # Muniru A Asiru, Feb 04 2018
MATHEMATICA
Select[Prime[Range[800]], PrimeQ[#^16+65536]&] (* Harvey P. Dale, Sep 07 2019 *)
PROG
(PARI) isA157764(n) = isprime(n) && isprime(n^16+65536) \\ Michael B. Porter, Dec 17 2009
(GAP) Filtered(Filtered([1..10^3], IsPrime), p->IsPrime(p) and IsPrime(p^16+2^16)); # Muniru A Asiru, Feb 04 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 06 2009
EXTENSIONS
More terms from Muniru A Asiru, Feb 05 2018
STATUS
approved