login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A146352
Primes p such that continued fraction of (1 + sqrt(p))/2 has period 7: primes in A146332.
3
89, 109, 113, 137, 373, 389, 509, 653, 797, 853, 997, 1009, 1493, 1997, 2309, 2621, 2677, 3797, 4973, 7817, 7873, 9829, 9833, 12197, 12269, 12821, 14009, 15773, 16661, 16673, 18253, 18269, 20389, 21557, 24197, 24533, 25037, 25741, 30677, 31973, 33941, 34253, 35977
OFFSET
1,1
LINKS
MAPLE
A146326 := proc(n) if not issqr(n) then numtheory[cfrac]( (1+sqrt(n))/2, 'periodic', 'quotients') ; nops(%[2]) ; else 0 ; fi; end: isA146352 := proc(n) RETURN(isprime(n) and A146326(n) = 7) ; end: for n from 2 to 13000 do if isA146352(n) then printf("%d, \n", n) ; fi; od: # R. J. Mathar, Sep 06 2009
MATHEMATICA
Select[Range[2*10^4], PrimeQ[#] && Length[ContinuedFraction[(1+Sqrt[#])/2][[2]]] == 7 &] (* Amiram Eldar, Mar 30 2020 *)
KEYWORD
nonn
AUTHOR
Artur Jasinski, Oct 30 2008
EXTENSIONS
607 removed, 797 inserted by R. J. Mathar, Sep 06 2009
More terms from Amiram Eldar, Mar 30 2020
STATUS
approved