login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259914
Staircase path through the array P(n,k) of the k-th partial sums of cubes (A000578).
0
1, 9, 10, 46, 57, 203, 272, 846, 1200, 3432, 5082, 13728, 21021, 54483, 85696, 215254, 346086, 848198, 1388900, 3337236, 5549786, 13119614, 22108704, 51557260, 87885070, 202588830, 348817770, 796117860, 1382941125, 3129153795
OFFSET
1,2
COMMENTS
The term "stepped path" in the name field is the same used in A001405 and A259775.
FORMULA
Conjecture: 2*(n+7)*(145672*n^2-236343*n+123525)*a(n) +(-78613*n^3-794662*n^2+327391*n+20220)*a(n-1) +2*(-582688*n^3-1889455*n^2-2148719*n-832650)*a(n-2) +4*(n-1)*(78613*n^2+133361*n+64050)*a(n-3) = 0. - R. J. Mathar, Jul 16 2015
EXAMPLE
The array begins:
[1], [9], 36, 100, 225, 441, ... A000537
1, [10], [46], 146, 371, 812, ... A024166
1, 11, [57], [203], 574, 1386, ... A101094
1, 12, 69, [272], [846], 2232, ... A101097
1, 13, 82, 354, [1200], [3432], ... A101102
1, 14, 96, 450, 1650, [5082], ... A254469
MATHEMATICA
Table[DifferenceRoot[Function[{a, n},
{(-650880 - 1496112*n - 1426512*n^2 - 722164*n^3 - 204716*n^4 - 30812*n^5 - 1924*n^6)*a[n] + (-56736 - 140412*n - 132006*n^2 - 58114*n^3 - 12090*n^4 - 962*n^5)*a[1 + n] + (78624 + 229884*n + 273800*n^2 + 167579*n^3 + 54567*n^4 + 8665*n^5 + 481*n^6)*a[2 + n] == 0, a[1] == 1, a[2] == 9}]][n], {n, 30}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jul 08 2015
STATUS
approved