login
A368047
a(n) = (-1)^n * n*(n + 1)*(2*n + (-1)^n * (4*n + 5) + 1) / 12.
2
0, 1, 9, 10, 50, 35, 147, 84, 324, 165, 605, 286, 1014, 455, 1575, 680, 2312, 969, 3249, 1330, 4410, 1771, 5819, 2300, 7500, 2925, 9477, 3654, 11774, 4495, 14415, 5456, 17424, 6545, 20825, 7770, 24642, 9139, 28899, 10660, 33620, 12341
OFFSET
0,3
FORMULA
a(n) = Sum_{n=0..k} (-1)^(n-k) *A368045(n, k).
G.f.: x*(1 + 9*x + 6*x^2 + 14*x^3 + x^4 + x^5)/((1 - x)^4*(1 + x)^4). - Stefano Spezia, Dec 10 2023
MATHEMATICA
A368047[n_]:=n(n+1)(2n+(-1)^n(4n+5)+1)(-1)^n/12; Array[A368047, 50, 0] (* or *)
LinearRecurrence[{0, 4, 0, -6, 0, 4, 0, -1}, {0, 1, 9, 10, 50, 35, 147, 84}, 50] (* Paolo Xausa, Dec 10 2023 *)
CROSSREFS
Sequence in context: A248353 A156857 A259914 * A037954 A271062 A041174
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Dec 09 2023
STATUS
approved