login
A256340
Numbers which have only digits 7 and 8 in base 10.
10
7, 8, 77, 78, 87, 88, 777, 778, 787, 788, 877, 878, 887, 888, 7777, 7778, 7787, 7788, 7877, 7878, 7887, 7888, 8777, 8778, 8787, 8788, 8877, 8878, 8887, 8888, 77777, 77778, 77787, 77788, 77877, 77878, 77887, 77888, 78777, 78778, 78787, 78788, 78877, 78878
OFFSET
1,1
FORMULA
a(n) = A007931(n) + A002280(A000523(n+1)) = A256292(n) + A256077(n) etc.
MATHEMATICA
Flatten[Table[FromDigits[#, 10]&/@Tuples[{7, 8}, n], {n, 5}]]
PROG
(Magma) [n: n in [1..35000] | Set(IntegerToSequence(n, 10)) subset {7, 8}];
(PARI) A256340(n)=vector(#n=binary(n+1)[2..-1], i, 10^(#n-i))*n~+10^#n\9*7
(Magma) [n: n in [1..100000] | Set(Intseq(n)) subset {7, 8}]; // Vincenzo Librandi, Aug 19 2016
(Python)
def a(n): return int(bin(n+1)[3:].replace('0', '7').replace('1', '8'))
print([a(n) for n in range(1, 45)]) # Michael S. Branicky, Jul 08 2021
CROSSREFS
Cf. A007088 (digits 0 & 1), A007931 (digits 1 & 2), A032810 (digits 2 & 3), A032834 (digits 3 & 4), A256290 (digits 4 & 5), A256291 (digits 5 & 6), A256292 (digits 6 & 7), A256341 (digits 8 & 9).
Sequence in context: A248276 A137145 A251626 * A192373 A354011 A103680
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Mar 27 2015
STATUS
approved