login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256077
Repeat 2^d times the repunit A002275(d); d = 1, 2, 3...
7
1, 1, 11, 11, 11, 11, 111, 111, 111, 111, 111, 111, 111, 111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 1111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111, 11111
OFFSET
1,3
COMMENTS
Yields the length of the n-th (nonempty) binary word (or word over any 2-letter alphabet, like A007931 or A032810 or A032834) in tally mark notation (A000042).
LINKS
FORMULA
a(n) = A002275(A000523(n+1)) = A032810(n)-A007931(n) = A032834(n)-A032810(n), etc.
MATHEMATICA
lim = 5; lst = Table[(10^n - 1)/9, {n, 0, lim}]; Reap@ For[i = 1, i <= lim, i++, Sow@ Table[lst[[i + 1]], {d, 2^i}]] // Flatten // Rest (* Michael De Vlieger, Apr 01 2015 *)
PROG
(PARI) a(n)=10^#binary(n+1)\90
(Python)
def A256077(n): return (10**((n+1).bit_length()-1)-1)//9 # Chai Wah Wu, Nov 07 2024
CROSSREFS
Sequence in context: A090862 A291498 A290656 * A287503 A286863 A288121
KEYWORD
nonn
AUTHOR
M. F. Hasler, Mar 21 2015
STATUS
approved