|
|
A256076
|
|
Non-palindromic balanced primes.
|
|
7
|
|
|
1823, 1933, 2141, 2251, 2633, 2963, 3061, 3391, 4091, 4253, 4363, 4583, 5393, 5717, 5827, 6637, 6857, 6967, 7829, 8147, 8419, 8969, 9067, 9397, 14303, 14503, 15013, 15313, 15413, 15913, 16223, 16823, 17033, 17333, 18043, 18143, 18443, 18743, 19553, 19753, 19853
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Here a number is called balanced if the sum of digits weighted by their arithmetic distance from the "center" is zero. Palindromic primes (A002385) are "trivially" balanced, so they are excluded here.
These are the primes in A256075, see there for further information.
See A256081 for the binary version and A256090 for the hexadecimal version.
|
|
LINKS
|
|
|
EXAMPLE
|
a(1)=1823 is balanced because 1*3/2 + 8*1/2 = 2*1/2 + 3*3/2.
|
|
MAPLE
|
filter:= proc(n) local L, m;
L:= convert(n, base, 10);
m:= (1+nops(L))/2;
add(L[i]*(i-m), i=1..nops(L))=0 and isprime(n) and L <> ListTools:-Reverse(L)
end proc:
select(filter, [seq(i, i=1001..20000, 2)]); # Robert Israel, May 29 2018
|
|
PROG
|
(PARI) is(n, d=digits(n), o=(#d+1)/2)=!(vector(#d, i, i-o)*d~)&&d!=Vecrev(d)&&isprime(n)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|