OFFSET
0,3
COMMENTS
Compare the definition of this sequence to G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} binomial(2*n,k)^2 * x^k] / G(x)^n * x^n/n ), which is satisfied by the rational function: G(x) = (1+x^2)^2*(1+x^3)/((1-x)*(1-x^2)).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..100
EXAMPLE
G.f.: A(x) = 1 + x + 9*x^2 + 18*x^3 + 64*x^4 + 172*x^5 + 477*x^6 +...
where
log(A(x)) = (1 + 3^2*x + 3^2*x^2 + x^3)/A(x) * x +
(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)/A(x)^2 * x^/2 +
(1 + 9^2*x + 36^2*x^2 + 84^2*x^3 + 126^2*x^4 + 126^2*x^5 + 84^2*x^6 + 36^2*x^7 + 9^2*x^8 + x^9)/A(x)^3 * x^3/3 +
(1 + 12^2*x + 66^2*x^2 + 220^2*x^3 + 495^2*x^4 + 792^2*x^5 + 924^2*x^6 + 792^2*x^7 + 495^2*x^8 + 220^2*x^9 + 66^2*x^10 + 12^2*x^11 + x^12)/A(x)^4 * x^4/4 +...
which involves the squares of the coefficients in (1 + x)^(3*n).
PROG
(PARI) /* By Definition: */
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, min(3*m, n-m), binomial(3*m, k)^2 * x^k) / (A +x*O(x^n))^m * x^m/m)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 07 2015
STATUS
approved