login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255837
G.f.: Product_{k>=1} (1+x^k)^(3*k+2).
3
1, 5, 18, 61, 182, 506, 1338, 3369, 8172, 19197, 43833, 97636, 212748, 454461, 953505, 1968095, 4001627, 8024295, 15885484, 31074351, 60111277, 115071431, 218126868, 409662895, 762679151, 1408172844, 2579599582, 4690277001, 8467363674, 15182486586
OFFSET
0,2
COMMENTS
In general, if g.f. = Product_{k>=1} (1+x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(1/6) * exp(-c^2 * Pi^4 / (1296*m*Zeta(3)) + (c * Pi^2 * n^(1/3)) / (2^(5/3) * 3^(4/3) * (m*Zeta(3))^(1/3)) + 3^(4/3) * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(4/3)) / (2^(m/12 + c/2 + 2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - Vaclav Kotesovec, Mar 08 2015
LINKS
FORMULA
a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(972*Zeta(3)) + Pi^2 * n^(1/3) / (2^(2/3) * 3^(5/3) * Zeta(3)^(1/3)) + 3^(5/3)/2^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(23/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+x^k)^(3*k+2), {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Cf. A026007 (k), A219555 (k+1), A052812 (k-1), A255834 (2*k+1), A255835 (2*k-1), A255836 (3*k+1).
Cf. A255803.
Sequence in context: A104630 A062809 A350782 * A122234 A113301 A111567
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved