login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Product_{k>=1} (1+x^k)^(3*k+2).
3

%I #10 Mar 08 2015 04:21:24

%S 1,5,18,61,182,506,1338,3369,8172,19197,43833,97636,212748,454461,

%T 953505,1968095,4001627,8024295,15885484,31074351,60111277,115071431,

%U 218126868,409662895,762679151,1408172844,2579599582,4690277001,8467363674,15182486586

%N G.f.: Product_{k>=1} (1+x^k)^(3*k+2).

%C In general, if g.f. = Product_{k>=1} (1+x^k)^(m*k+c), m > 0, then a(n) ~ (m*Zeta(3))^(1/6) * exp(-c^2 * Pi^4 / (1296*m*Zeta(3)) + (c * Pi^2 * n^(1/3)) / (2^(5/3) * 3^(4/3) * (m*Zeta(3))^(1/3)) + 3^(4/3) * (m*Zeta(3))^(1/3) * n^(2/3) / 2^(4/3)) / (2^(m/12 + c/2 + 2/3) * 3^(1/3) * sqrt(Pi) * n^(2/3)). - _Vaclav Kotesovec_, Mar 08 2015

%H Vaclav Kotesovec, <a href="/A255837/b255837.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) ~ Zeta(3)^(1/6) * exp(-Pi^4/(972*Zeta(3)) + Pi^2 * n^(1/3) / (2^(2/3) * 3^(5/3) * Zeta(3)^(1/3)) + 3^(5/3)/2^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(23/12) * 3^(1/6) * sqrt(Pi) * n^(2/3)), where Zeta(3) = A002117.

%t nmax=50; CoefficientList[Series[Product[(1+x^k)^(3*k+2),{k,1,nmax}],{x,0,nmax}],x]

%Y Cf. A026007 (k), A219555 (k+1), A052812 (k-1), A255834 (2*k+1), A255835 (2*k-1), A255836 (3*k+1).

%Y Cf. A255803.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Mar 07 2015