OFFSET
0,4
COMMENTS
Compare the definition of this sequence to G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / G(x)^n * x^n/n ) where T(n,k) = [x^k] (1+x+x^2)^n, which is satisfied by the rational function: G(x) = (1+x^3)*(1+x^6)/((1-x)*(1-x^4)).
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..100
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 13*x^6 + 24*x^7 +...
where
log(A(x)) = (1 + x + x^2 + x^3)/A(x) * x +
(1 + 2^2*x + 3^2*x^2 + 4^2*x^3 + 3^2*x^4 + 2^2*x^5 + x^6)/A(x)^2 * x^2/2 +
(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 12^2*x^4 + 12^2*x^5 + 10^2*x^6 + 6^2*x^7 + 3^2*x^8 + x^9)/A(x)^3 * x^3/3 +
(1 + 4^2*x + 10^2*x^2 + 20^2*x^3 + 31^2*x^4 + 40^2*x^5 + 44^2*x^6 + 40^2*x^7 + 31^2*x^8 + 20^2*x^9 + 10^2*x^10 + 4^2*x^11 + x^12)/A(x)^4 * x^4/4 +
which involves the squares of the coefficients in (1 + x + x^2 + x^3)^n.
PROG
(PARI) /* By Definition: */
{T(n, k)=polcoeff((1 + x + x^2 + x^3 + x*O(x^k))^n, k)}
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, min(3*m, n-m), T(m, k)^2 * x^k) / (A +x*O(x^n))^m * x^m/m)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2015
STATUS
approved