login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248876
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..3*n} T(n,k)^2 * x^k] / A(x)^n * x^n/n ) where T(n,k) equals the coefficient of x^k in (1+x+x^2+x^3)^n.
2
1, 1, 1, 2, 4, 8, 13, 24, 45, 85, 161, 305, 582, 1116, 2149, 4152, 8049, 15653, 30528, 59695, 117012, 229880, 452565, 892703, 1764099, 3492029, 6923494, 13747483, 27335873, 54427621, 108505081, 216568556, 432740907, 865610375, 1733227339, 3473805680, 6968708734, 13991916510, 28116598325
OFFSET
0,4
COMMENTS
Compare the definition of this sequence to G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / G(x)^n * x^n/n ) where T(n,k) = [x^k] (1+x+x^2)^n, which is satisfied by the rational function: G(x) = (1+x^3)*(1+x^6)/((1-x)*(1-x^4)).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 13*x^6 + 24*x^7 +...
where
log(A(x)) = (1 + x + x^2 + x^3)/A(x) * x +
(1 + 2^2*x + 3^2*x^2 + 4^2*x^3 + 3^2*x^4 + 2^2*x^5 + x^6)/A(x)^2 * x^2/2 +
(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 12^2*x^4 + 12^2*x^5 + 10^2*x^6 + 6^2*x^7 + 3^2*x^8 + x^9)/A(x)^3 * x^3/3 +
(1 + 4^2*x + 10^2*x^2 + 20^2*x^3 + 31^2*x^4 + 40^2*x^5 + 44^2*x^6 + 40^2*x^7 + 31^2*x^8 + 20^2*x^9 + 10^2*x^10 + 4^2*x^11 + x^12)/A(x)^4 * x^4/4 +
which involves the squares of the coefficients in (1 + x + x^2 + x^3)^n.
PROG
(PARI) /* By Definition: */
{T(n, k)=polcoeff((1 + x + x^2 + x^3 + x*O(x^k))^n, k)}
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, min(3*m, n-m), T(m, k)^2 * x^k) / (A +x*O(x^n))^m * x^m/m)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2015
STATUS
approved