login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..3*n} T(n,k)^2 * x^k] / A(x)^n * x^n/n ) where T(n,k) equals the coefficient of x^k in (1+x+x^2+x^3)^n.
2

%I #17 Mar 08 2015 21:00:50

%S 1,1,1,2,4,8,13,24,45,85,161,305,582,1116,2149,4152,8049,15653,30528,

%T 59695,117012,229880,452565,892703,1764099,3492029,6923494,13747483,

%U 27335873,54427621,108505081,216568556,432740907,865610375,1733227339,3473805680,6968708734,13991916510,28116598325

%N G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..3*n} T(n,k)^2 * x^k] / A(x)^n * x^n/n ) where T(n,k) equals the coefficient of x^k in (1+x+x^2+x^3)^n.

%C Compare the definition of this sequence to G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / G(x)^n * x^n/n ) where T(n,k) = [x^k] (1+x+x^2)^n, which is satisfied by the rational function: G(x) = (1+x^3)*(1+x^6)/((1-x)*(1-x^4)).

%H Paul D. Hanna, <a href="/A248876/b248876.txt">Table of n, a(n) for n = 0..100</a>

%e G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 13*x^6 + 24*x^7 +...

%e where

%e log(A(x)) = (1 + x + x^2 + x^3)/A(x) * x +

%e (1 + 2^2*x + 3^2*x^2 + 4^2*x^3 + 3^2*x^4 + 2^2*x^5 + x^6)/A(x)^2 * x^2/2 +

%e (1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 12^2*x^4 + 12^2*x^5 + 10^2*x^6 + 6^2*x^7 + 3^2*x^8 + x^9)/A(x)^3 * x^3/3 +

%e (1 + 4^2*x + 10^2*x^2 + 20^2*x^3 + 31^2*x^4 + 40^2*x^5 + 44^2*x^6 + 40^2*x^7 + 31^2*x^8 + 20^2*x^9 + 10^2*x^10 + 4^2*x^11 + x^12)/A(x)^4 * x^4/4 +

%e which involves the squares of the coefficients in (1 + x + x^2 + x^3)^n.

%o (PARI) /* By Definition: */

%o {T(n,k)=polcoeff((1 + x + x^2 + x^3 + x*O(x^k))^n, k)}

%o {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, min(3*m,n-m), T(m,k)^2 * x^k) / (A +x*O(x^n))^m * x^m/m)+x*O(x^n))); polcoeff(A, n)}

%o for(n=0, 40, print1(a(n), ", "))

%Y Cf. A255839, A200537, A251687, A251688, A005721.

%K nonn

%O 0,4

%A _Paul D. Hanna_, Mar 04 2015