login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166640
Totally multiplicative sequence with a(p) = 9*(p-1) for prime p.
1
1, 9, 18, 81, 36, 162, 54, 729, 324, 324, 90, 1458, 108, 486, 648, 6561, 144, 2916, 162, 2916, 972, 810, 198, 13122, 1296, 972, 5832, 4374, 252, 5832, 270, 59049, 1620, 1296, 1944, 26244, 324, 1458, 1944, 26244, 360, 8748, 378, 7290, 11664, 1782, 414, 118098
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (9*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (9*(p(k)-1)^e(k).
a(n) = A165830(n) * A003958(n) = 9^bigomega(n) * A003958(n) = 9^A001222(n) * A003958(n).
MATHEMATICA
DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] :=
DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*9^(PrimeOmega[m]), {m, 1, 100}] (* G. C. Greubel, May 20 2016 *)
f[p_, e_] := (9*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n)); for (k=1, #f~, f[k, 1] = 9*(f[k, 1]-1)); factorback(f); } \\ Michel Marcus, May 21 2016
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jaroslav Krizek, Oct 18 2009
STATUS
approved