login
A166638
Totally multiplicative sequence with a(p) = 8*(p-1) for prime p.
1
1, 8, 16, 64, 32, 128, 48, 512, 256, 256, 80, 1024, 96, 384, 512, 4096, 128, 2048, 144, 2048, 768, 640, 176, 8192, 1024, 768, 4096, 3072, 224, 4096, 240, 32768, 1280, 1024, 1536, 16384, 288, 1152, 1536, 16384, 320, 6144, 336, 5120, 8192, 1408, 368, 65536
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = (8*(p-1))^e. If n = Product p(k)^e(k) then a(n) = Product (8*(p(k)-1))^e(k).
a(n) = A165829(n) * A003958(n) = 8^bigomega(n) * A003958(n) = 8^A001222(n) * A003958(n).
MATHEMATICA
DirichletInverse[f_][1] = 1/f[1]; DirichletInverse[f_][n_] :=
DirichletInverse[f][n] = -1/f[1]*Sum[f[n/d]*DirichletInverse[f][d], {d, Most[Divisors[n]]}]; muphi[n_] := MoebiusMu[n]*EulerPhi[n]; a[m_] := DirichletInverse[muphi][m]; Table[a[m]*8^(PrimeOmega[m]), {m, 1, 100}] (* G. C. Greubel, May 20 2016 *)
f[p_, e_] := (8*(p-1))^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 17 2023 *)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jaroslav Krizek, Oct 18 2009
STATUS
approved