login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339355 Maximum number of copies of a 12345 permutation pattern in an alternating (or zig-zag) permutation of length n + 7. 1
8, 16, 64, 112, 272, 432, 832, 1232, 2072, 2912, 4480, 6048, 8736, 11424, 15744, 20064, 26664, 33264, 42944, 52624, 66352, 80080, 99008, 117936, 143416, 168896, 202496, 236096, 279616, 323136, 378624, 434112, 503880, 573648, 660288, 746928, 853328, 959728, 1089088, 1218448 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The maximum number of copies of 123 in an alternating permutation is motivated in the Notices reference, and the argument here is analogous.
LINKS
Lara Pudwell, From permutation patterns to the periodic table, Notices of the American Mathematical Society. 67.7 (2020), 994-1001.
FORMULA
a(2*n) = 16*A005585(n) = 32*binomial(n+4, 5) - 16*binomial(n+3, 4).
a(2*n-1) = 8*A033455(n) = (4*n*(n^4 + 5*n^3 + 10*n^2 + 10*n + 4))/15.
D-finite with recurrence: (n-1)*((n-3)^2+9*n-6)*a(n) - (2*(n-3)^2+20*n-16)*a(n-1) - (n+5)*((n-3)^2+11*n-2)*a(n-2) = 0. - Georg Fischer, Nov 25 2022
EXAMPLE
a(1) = 8. The alternating permutation of length 1 + 7 = 8 with the maximum number of copies of 12345 is 13254768. The eight copies are 12468, 12478, 12568, 12578, 13468, 13478, 13568, and 13578.
MAPLE
a := proc(n2) local n; n:= floor(n2/2): if n2 = 2*n then 32*binomial(n+4, 5) - 16*binomial(n+3, 4) else n:=n+1; (4*n*(n^4+5*n^3+10*n^2+10*n+4))/15 fi end; seq(a(n), n=1..20); # Georg Fischer, Nov 25 2022
CROSSREFS
Sequence in context: A307876 A166638 A356961 * A132794 A082982 A218899
KEYWORD
nonn
AUTHOR
Lara Pudwell, Dec 01 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 12:42 EDT 2024. Contains 375851 sequences. (Running on oeis4.)