login
A082982
Numbers k such that k, k+1 and k+2 are sums of 2 squares.
5
0, 8, 16, 72, 80, 144, 232, 288, 360, 520, 576, 584, 800, 808, 1088, 1096, 1152, 1224, 1312, 1600, 1664, 1744, 1800, 1872, 1960, 2248, 2304, 2312, 2384, 2592, 2600, 2824, 3328, 3392, 3528, 3600, 4112, 4176, 4328, 4624, 5120, 5184, 5328, 5408, 5904, 6056
OFFSET
1,2
COMMENTS
All terms are multiples of 8, cf. A304441. - M. F. Hasler, May 13 2018
LINKS
Ajai Choudhry and Bibekananda Maji, Finite sequences of integers expressible as sums of two squares, arXiv:2310.13317 [math.NT], 2023.
FORMULA
a(n) = 8*A304441(n). - M. F. Hasler, May 13 2018
EXAMPLE
80 is here because 80=4^2+8^2, 81=0^2+9^2 and 82=1^2+9^2.
PROG
(PARI) issumsq(n) = {ok = 0; for (i=0, ceil(sqrt(n/2)), if (issquare(n - i^2), return (1)); ); return (0); }
isok(n) = issumsq(n) && issumsq(n+1) && issumsq(n+2) \\ Michel Marcus, Jun 30 2013
(PARI) is_A082982(n)={n%8==0&&is_A001481(n\8)&&is_A001481(n\2+1)&&is_A001481(n+1)} \\ using is_A001481 is much faster than the issumsq() above. - M. F. Hasler, May 13 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Xavier Xarles (xarles(AT)mat.uab.es), May 28 2003
EXTENSIONS
More terms from Michel Marcus, Jun 30 2013
STATUS
approved