login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133581
(k^2)-th k-smooth number for k = prime(n).
1
8, 16, 54, 112, 396, 512, 1008, 1155, 1794, 3312, 3520, 5488, 6776, 7020, 8405, 11180, 14384, 14720, 18241, 20339, 20709, 24769, 27094, 31648, 38994, 41890, 42336, 45318, 45825, 48852, 66234, 69874, 76857, 77441, 91719, 92323, 100215, 108376, 112896, 121539
OFFSET
1,1
COMMENTS
An integer is k-smooth if it has no prime factors > k.
LINKS
Eric Weisstein's World of Mathematics, Smooth Number
FORMULA
a(n) = A001248(n)-th integer which has no prime factors > A000040(n).
EXAMPLE
a(1) = 8 = A000079(4).
a(2) = 16 = A003586(9).
a(3) = 54 = A051037(25).
PROG
(Python)
from sympy import integer_log, prime, prevprime
def A133581(n):
if n==1: return 8
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x, m): return sum((x//3**i).bit_length() for i in range(integer_log(x, 3)[0]+1)) if m==3 else sum(g(x//(m**i), prevprime(m))for i in range(integer_log(x, m)[0]+1))
k = prime(n)
def f(x): return k**2+x-g(x, k)
return bisection(f, k**2, k**2) # Chai Wah Wu, Sep 17 2024
KEYWORD
nonn,less
AUTHOR
Jonathan Vos Post, Dec 26 2007
EXTENSIONS
Corrected and extended by D. S. McNeil, Dec 08 2010
a(33)-a(40) from Chai Wah Wu, Sep 17 2024
STATUS
approved