OFFSET
1,2
LINKS
Luciano Ancora, Table of n, a(n) for n = 1..1000
Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(5 + 2*n)*(- 3 + 5*n + n^2)*(4 + 15*n + 3*n^2)/332640.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^6.
EXAMPLE
First differences: 1, 63, 665, 3367, 11529, ... (A022522)
--------------------------------------------------------------------------
The sixth powers: 1, 64, 729, 4096, 15625, ... (A001014)
--------------------------------------------------------------------------
First partial sums: 1, 65, 794, 4890, 20515, ... (A000540)
Second partial sums: 1, 66, 860, 5750, 26265, ... (A101093)
Third partial sums: 1, 67, 927, 6677, 32942, ... (A254640)
Fourth partial sums: 1, 68, 995, 7672, 40614, ... (A254645)
Fifth partial sums: 1, 69, 1064, 8736, 49350, ... (this sequence)
MATHEMATICA
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (5 + 2*n) (- 3 + 5*n + n^2) (4 + 15 n + 3 n^2)/332640, {n, 22}] (* or *)
CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^12, {x, 0, 21}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 12 2015
STATUS
approved