OFFSET
1,2
LINKS
Luciano Ancora, Table of n, a(n) for n = 1..1000
Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials.
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: (- x - 26*x^2 - 66*x^3 - 26*x^4 - x^5)/(- 1 + x)^11.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(- 2 + 5*n + n^2)*(9 + 10*n + 2*n^2)/60480.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^5.
Sum_{n>=1} 1/a(n) = 475867/180 - (2560/13)*sqrt(7)*Pi*tan(sqrt(7)*Pi/2) + (210/13)*sqrt(3/11)*Pi*tan(sqrt(33)*Pi/2). - Amiram Eldar, Jan 27 2022
EXAMPLE
Fifth differences: 1, 27, 93, 119, 120, (repeat 120) (A101100)
Fourth differences: 1, 28, 121, 240, 360, 480, ... (A101095)
Third differences: 1, 29, 150, 390, 750, 1230, ... (A101096)
Second differences: 1, 30, 180, 570, 1320, 2550, ... (A101098)
First differences: 1, 31, 211, 781, 2101, 4651, ... (A022521)
-------------------------------------------------------------------------
The fifth powers: 1, 32, 243, 1024, 3125, 7776, ... (A000584)
-------------------------------------------------------------------------
First partial sums: 1, 33, 276, 1300, 4425, 12201, ... (A000539)
Second partial sums: 1, 34, 310, 1610, 6035, 18236, ... (A101092)
Third partial sums: 1, 35, 345, 1955, 7990, 26226, ... (A101099)
Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ... (A254644)
Fifth partial sums: 1, 37, 418, 2754, 13080, 49632, ... (this sequence)
MATHEMATICA
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (- 2 + 5 n + n^2) (9 + 10 n + 2 n^2)/60480, {n, 24}] (* or *)
CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^11, {x, 0, 23}], x]
Nest[Accumulate, Range[30]^5, 5] (* or *) LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 37, 418, 2754, 13080, 49632, 159654, 452166, 1157013, 2724865, 5988268}, 30] (* Harvey P. Dale, Jan 30 2019 *)
PROG
(PARI) a(n)=n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(-2+5*n+n^2)*(9+10*n+2*n^2)/60480 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 12 2015
STATUS
approved