|
|
A083818
|
|
Numbers n such that 2n-1 is the digit reversal of n.
|
|
2
|
|
|
1, 37, 397, 3997, 39997, 399997, 3999997, 39999997, 399999997, 3999999997, 39999999997, 399999999997, 3999999999997, 39999999999997, 399999999999997, 3999999999999997, 39999999999999997, 399999999999999997, 3999999999999999997, 39999999999999999997
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) = 1 + 36 + 360 + 3600 + 36000 + ..., for a total of n terms. a(n) = 1 + sum of first n-1 terms of the geometric progression with first term 36 and common ratio 10. a(n) = 1 + 36*A000042(n-1) (the unary sequence).
|
|
LINKS
|
Table of n, a(n) for n=1..20.
Index entries for linear recurrences with constant coefficients, signature (11,-10).
|
|
FORMULA
|
a(n) = 4*10^(n-1) - 3.
|
|
EXAMPLE
|
2*37 - 1 = 73.
|
|
CROSSREFS
|
Cf. A083811, A083812, A083813.
Digit reversals are A169830.
Sequence in context: A264626 A201789 A115926 * A090023 A254682 A232251
Adjacent sequences: A083815 A083816 A083817 * A083819 A083820 A083821
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), May 08 2003
|
|
EXTENSIONS
|
a(1)=1 inserted by David Radcliffe, Jul 25 2015
|
|
STATUS
|
approved
|
|
|
|