login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169830
Numbers n such that 2*reverse(n) - n = 1.
4
1, 73, 793, 7993, 79993, 799993, 7999993, 79999993, 799999993, 7999999993, 79999999993, 799999999993, 7999999999993, 79999999999993, 799999999999993, 7999999999999993, 79999999999999993, 799999999999999993, 7999999999999999993, 79999999999999999993
OFFSET
1,2
COMMENTS
The sequence is infinite since it contains all numbers of the form 799...9993. (Cf. A101155, A101849.) [Ulrich Krug (leuchtfeuer37(AT)gmx.de), Jun 02 2010]
All numbers of the form 8*10^k-7 are members, but are there any others? - Robert G. Wilson v, Jun 01 2010
All solutions are of the form 8*10^k-7. - David Radcliffe, Jul 25 2015
FORMULA
a(n) = 8*10^(n-1) - 7. - David Radcliffe, Jul 25 2015
From Matthew House, Feb 12 2017: (Start)
G.f.: x*(1+62*x)/((1-x)*(1-10*x)).
a(n) = 11*a(n-1) - 10*a(n-2). (End)
MATHEMATICA
k = 1; lst = {}; fQ[n_] := 2 FromDigits@ Reverse@ IntegerDigits@n == 1 + n; While[k < 10^8, If[fQ@k, Print@k; AppendTo[lst, k]]; k++ ]; lst (* Robert G. Wilson v, Jun 01 2010 *)
Rest@ CoefficientList[Series[x (1 + 62 x)/((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* or *)
Table[If[n == 1, 1, FromDigits@ Join[{7}, ConstantArray[9, n - 2], {3}]], {n, 20}] (* or *)
LinearRecurrence[{11, -10}, {1, 73}, 20] (* Michael De Vlieger, Feb 12 2017 *)
PROG
(PARI) isok(n) = 2*fromdigits(Vecrev(digits(n))) - n == 1; \\ Michel Marcus, Feb 12 2017
CROSSREFS
Same sequence as A100412. Digit reversals of A083818.
Sequence in context: A066101 A272768 A100412 * A197341 A104907 A296024
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, May 31 2010
EXTENSIONS
a(6)-a(8) from Robert G. Wilson v, Jun 01 2010
More terms from David Radcliffe, Jul 25 2015
STATUS
approved