The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101849 Indices of primes in sequence defined by A(0) = 37, A(n) = 10*A(n-1) + 27 for n > 0. 3
 0, 1, 13, 19, 29, 43, 65, 259, 871, 8845, 26743, 57505, 98471, 106891 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Numbers n such that (360*10^n - 27)/9 is prime. Numbers n such that digit 3 followed by n >= 0 occurrences of digit 9 followed by digit 7 is prime. Numbers corresponding to terms <= 871 are certified primes. a(14) > 10^5. - Robert Price, Mar 17 2015. a(15) > 2*10^5. - Robert Price, Oct 02 2015 REFERENCES Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467. LINKS Makoto Kamada, Prime numbers of the form 399...997. FORMULA a(n) = A101398(n) - 1. EXAMPLE 397 is prime, hence 1 is a term. MATHEMATICA Select[Range[0, 1000], PrimeQ[(360*10^# - 27)/9] &] (* Robert Price, Mar 17 2015 *) PROG (PARI) a=37; for(n=0, 1500, if(isprime(a), print1(n, ", ")); a=10*a+27) (PARI) for(n=0, 1500, if(isprime((360*10^n-27)/9), print1(n, ", "))) CROSSREFS Cf. A000533, A002275, A101155, A169830, A101398. Sequence in context: A038954 A005106 A120140 * A141562 A108097 A102764 Adjacent sequences:  A101846 A101847 A101848 * A101850 A101851 A101852 KEYWORD nonn,hard,more AUTHOR Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 20 2004 EXTENSIONS 8845 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008 a(11)-a(13) derived from A101398 by Robert Price, Mar 17 2015 a(14) from Robert Price, Oct 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 18:38 EDT 2021. Contains 347659 sequences. (Running on oeis4.)