login
A353205
Expansion of e.g.f. (1 - x^3)^(1 + 1/x + 1/x^2).
2
1, -1, -1, -1, 13, 19, -29, 251, 281, -13033, 56071, -28601, -10136411, 57321419, -39757717, -17223709021, 139901102641, -12418205969, -56710054724849, 628073178260687, 380303328920381, -324513582131326141, 4616335903275095539, 5642278545451902859
OFFSET
0,5
LINKS
FORMULA
E.g.f.: exp( -Sum{k >= 1} x^k/A008620(k-1) ).
a(0) = 1; a(n) = -(n-1)! * Sum_{k=1..n} k/A008620(k-1) * a(n-k)/(n-k)!.
MATHEMATICA
nmax = 25; CoefficientList[Series[(1 - x^3)^(1 + 1/x + 1/x^2), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, May 09 2022 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace((1-x^3)^(1+1/x+1/x^2)))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-sum(k=1, N, x^k/((k+2)\3)))))
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=-(i-1)!*sum(j=1, i, j/((j+2)\3)*v[i-j+1]/(i-j)!)); v;
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 30 2022
STATUS
approved