login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A246689
Expansion of e.g.f. 1/(1 - x^3)^(1 + 1/x + 1/x^2).
5
1, 1, 3, 13, 61, 381, 2791, 22513, 210393, 2183401, 24575851, 305067621, 4097726293, 58876485253, 910581818511, 15005958062761, 261751577640241, 4844661893762193, 94564968066402643, 1938366513866527741, 41760228574294689261, 941821175462309114701
OFFSET
0,3
COMMENTS
Compare with A193281.
LINKS
FORMULA
E.g.f.: A(x) = 1/(1 - x^3)^(1 + 1/x + 1/x^2) = exp( Sum_{n>=1} x^n/A008620(n-1) ) = 1 + x + 3*x^2/2! + 13*x^3/3! + 61*x^4/4! + ....
A(x) = Sum_{n>=0} (x^n/n!)*Product {k = 1..n} (1 + x + k*x^2).
It appears that a(n) == 1 (mod n*(n-1)).
a(n) ~ n! * (n^2 / 54) * (1 + 6*log(n)/n). - Vaclav Kotesovec, Sep 01 2014
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k/A008620(k-1) * a(n-k)/(n-k)!. - Seiichi Manyama, Apr 30 2022
MAPLE
seq(coeftayl(n!/(1-x^3)^(1+1/x+1/x^2), x = 0, n), n = 0..10);
MATHEMATICA
CoefficientList[Series[1/(1 - x^3)^(1 + 1/x + 1/x^2), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Sep 01 2014 *)
PROG
(PARI) my(x='x+O('x^66)); Vec(serlaplace(1/(1 - x^3)^(1 + 1/x + 1/x^2))) \\ Joerg Arndt, Sep 01 2014
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, j/((j+2)\3)*v[i-j+1]/(i-j)!)); v; \\ Seiichi Manyama, Apr 30 2022
CROSSREFS
Sequence in context: A243014 A258799 A375651 * A355987 A373683 A141786
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Sep 01 2014
STATUS
approved