login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243014
Number of acyclic digraphs (DAGS) on n labeled nodes, where the indegree and outdegree of each node is at most 1.
2
1, 1, 3, 13, 61, 321, 1951, 13693, 109593, 986401, 9864091, 108505101, 1302061333, 16926797473, 236975164791, 3554627472061, 56874039553201, 966858672404673, 17403456103284403, 330665665962403981, 6613313319248079981, 138879579704209680001
OFFSET
0,3
COMMENTS
a(n) is the number of acyclic digraphs (DAGS) on n labeled nodes, where the indegree and outdegree of each node is at most 1. For example, with vertex set {A,B,C} the possible ways are: one 3-component graph {A,B,C}, six 2-component graph {{A->B,C},{B->A,C},{A->C,B},{C->A,B},{C->B,A},{B->C,A}}, and six 1-component graph {{A->B->C},{B->A->C},{A->C->B},{C->A->B},{C->B->A},{B->C->A}}.
FORMULA
a(n) = (n!*Sum(1/k!))+1, k=0..n-2.
a(n) = (n*(a(n-1)+n-2))+1, for n>1, a(1)=1.
a(n) = A038154(n)+1.
E.g.f.: exp(x)*(x^2-x+1)/(1-x). - Alois P. Heinz, Aug 21 2017
PROG
(MATLAB) @(n)(factorial(n)*sum(1./(factorial(0:n-2)))+1)
CROSSREFS
Sequence in context: A200215 A074548 A367059 * A258799 A375651 A246689
KEYWORD
nonn
AUTHOR
Shuaib Ahmed S, May 29 2014
EXTENSIONS
a(0)=1 prepended, one term corrected, more terms added by Alois P. Heinz, Aug 21 2017
STATUS
approved