login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038154
a(n) = n! * Sum_{k=0..n-2} 1/k!.
8
0, 0, 2, 12, 60, 320, 1950, 13692, 109592, 986400, 9864090, 108505100, 1302061332, 16926797472, 236975164790, 3554627472060, 56874039553200, 966858672404672, 17403456103284402, 330665665962403980, 6613313319248079980, 138879579704209680000
OFFSET
0,3
COMMENTS
The number of rank-orderings of (>=2)-element subsets of an n-set. (Counts nontrivial votes in a rank-ordering voting system.) E.g., a(5) = 320 = 120+120+60+20 because of 5-, 4-, 3- and 2-element subsets. - Warren D. Smith, Jul 06 2005
a(n) is the number of simple cycles through a vertex of the complete graph K_(n+1) on n+1 vertices [Hassani]. For example, in the complete graph K_4 with vertex set {A,B,C,D} there are a(3) = 12 simple cycles at the vertex A, namely the six 3-cycles ABCA, ABDA, ACBA, ACDA, ADBA and ADCA and the six 4-cycles ABCDA, ABDCA, ACBDA, ACDBA, ADBCA and ADCBA. The sum of the lengths of the cycles at a vertex of K_n is equal to A141834(n). - Peter Bala, Jul 09 2008
See A000522 for the number of paths between a pair of distinct vertices of K_n. - Peter Bala, Jul 09 2008
a(n) = n*a(n-1) + A000217(n-1), where A000217(n) is the n-th triangular number. - Gary Detlefs, May 20 2010
FORMULA
a(n) = A007526(n) - n.
a(n) = floor(n!*exp(1))-n-1, n>0. - Vladeta Jovovic, Aug 25 2001
a(n) = n*a(n-1) + n*(n-1), for n>=3, a(2)=2 and a(3) = 12. - Ian Myers, Jul 19 2012
a(n) = A000522(n-2) * n*(n-1). - Doug Bell, Jun 30 2015
E.g.f.: exp(x)*x^2/(1 - x). - Ilya Gutkovskiy, Jan 26 2017
a(n) = 2*A038155(n). - Alois P. Heinz, Jan 26 2017
EXAMPLE
0=1*0+0, 2=2*0+2, 12=3*2+6, 60=4*12+12, 320 = 5*60+20, ... - Gary Detlefs, May 20 2010
MATHEMATICA
Table[n!Sum[1/k!, {k, 0, n-2}], {n, 0, 30}] (* Harvey P. Dale, Jun 04 2012 *)
PROG
(PARI) main(size)=my(k); vector(size, n, (n-1)!*sum(k=0, n-3, 1/k!)); \\ Anders Hellström, Jul 14 2015
CROSSREFS
KEYWORD
nonn,changed
STATUS
approved