login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371399
a(n) = 2^n * Sum_{k=0..n} binomial(k + n, k) * binomial(2*n - k, n) * (-1/2)^k.
2
1, 2, 12, 60, 340, 1932, 11256, 66264, 394020, 2359500, 14211912, 86004360, 522502344, 3184844600, 19467675120, 119288938800, 732508344516, 4506518476620, 27771180181800, 171393806476200, 1059200506065240, 6553715347503720, 40595235803924880, 251709010315822800
OFFSET
0,2
FORMULA
a(n) = 2^n * Sum_{k=0..n} A371400(n, k) * (-1/2)^k.
a(n) = 2^n * binomial(2*n, n) * hypergeom([-n, 1 + n], [-2*n], -1/2).
MAPLE
seq((2^n*add(binomial(k+n, k)*binomial(2*n-k, n)*(-1/2)^k, k=0..n)), n=0..23);
MATHEMATICA
a[n_] := 2^n Binomial[2 n, n] Hypergeometric2F1[-n, 1 + n, -2 n, -1/2];
Table[a[n], {n, 0, 23}]
PROG
(Python)
from math import comb
def A371399(n): return sum(comb(k+n, k)*comb((n<<1)-k, n)*(-1 if k&1 else 1)<<n-k for k in range(n+1)) # Chai Wah Wu, Mar 22 2024
CROSSREFS
Cf. A371400.
Sequence in context: A074445 A038154 A357661 * A061834 A364283 A360590
KEYWORD
nonn
AUTHOR
Peter Luschny, Mar 21 2024
STATUS
approved