login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373683
Expansion of e.g.f. exp(x / (1 - x^2)) / (1 - x^2).
3
1, 1, 3, 13, 61, 441, 3031, 28813, 267513, 3088081, 36278731, 491262861, 6962025973, 108395586313, 1791145742751, 31601369155021, 594291393830641, 11740929829286433, 246910933786777363, 5406641472165854221, 125497950720670828461, 3018786042678264770521
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n-k,k)/(n-2*k)!.
a(n) == 1 (mod 2).
PROG
(PARI) a(n) = n!*sum(k=0, n\2, binomial(n-k, k)/(n-2*k)!);
CROSSREFS
Cf. A088009.
Sequence in context: A375651 A246689 A355987 * A141786 A122122 A093424
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 13 2024
STATUS
approved