login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. 1/(1 - x^3)^(1 + 1/x + 1/x^2).
5

%I #31 Feb 25 2023 18:08:45

%S 1,1,3,13,61,381,2791,22513,210393,2183401,24575851,305067621,

%T 4097726293,58876485253,910581818511,15005958062761,261751577640241,

%U 4844661893762193,94564968066402643,1938366513866527741,41760228574294689261,941821175462309114701

%N Expansion of e.g.f. 1/(1 - x^3)^(1 + 1/x + 1/x^2).

%C Compare with A193281.

%H Seiichi Manyama, <a href="/A246689/b246689.txt">Table of n, a(n) for n = 0..448</a>

%F E.g.f.: A(x) = 1/(1 - x^3)^(1 + 1/x + 1/x^2) = exp( Sum_{n>=1} x^n/A008620(n-1) ) = 1 + x + 3*x^2/2! + 13*x^3/3! + 61*x^4/4! + ....

%F A(x) = Sum_{n>=0} (x^n/n!)*Product {k = 1..n} (1 + x + k*x^2).

%F It appears that a(n) == 1 (mod n*(n-1)).

%F a(n) ~ n! * (n^2 / 54) * (1 + 6*log(n)/n). - _Vaclav Kotesovec_, Sep 01 2014

%F a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} k/A008620(k-1) * a(n-k)/(n-k)!. - _Seiichi Manyama_, Apr 30 2022

%p seq(coeftayl(n!/(1-x^3)^(1+1/x+1/x^2), x = 0, n), n = 0..10);

%t CoefficientList[Series[1/(1 - x^3)^(1 + 1/x + 1/x^2), {x, 0, 20}], x] * Range[0, 20]! (* _Vaclav Kotesovec_, Sep 01 2014 *)

%o (PARI) my(x='x+O('x^66)); Vec(serlaplace(1/(1 - x^3)^(1 + 1/x + 1/x^2))) \\ _Joerg Arndt_, Sep 01 2014

%o (PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, j/((j+2)\3)*v[i-j+1]/(i-j)!)); v; \\ _Seiichi Manyama_, Apr 30 2022

%Y Cf. A008620, A193281.

%K nonn,easy

%O 0,3

%A _Peter Bala_, Sep 01 2014