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Abstract. We find all numbers N such that rev(N) = 2N − 1, where
rev(N) is the digit reversal of N .

Digit reversal is a frequent topic in recreational mathematics. A number
that is unchanged when its digits are reversed is called a palindrome. At
the time of writing, there are 2366 sequences in the On-Line Encyclopedia
of Integer Sequences that mention palindromes in their descriptions.

It is interesting to investigate the possible relations that can exist between
a number and its digit reversal. For example, 2178 has the remarkable
property that its reversal is four times as large. In fact, there are infinitely
many numbers with this property.

2178× 4 = 8712

21978× 4 = 87912

219978× 4 = 879912

2199978× 4 = 8799912

· · ·

We will prove that there is no number (except 0) whose reversal is twice
as large. However, there are infinitely many near misses; numbers N whose
reversal is equal to 2N − 1. We will prove that the sequence shown below
represents all solutions to rev(N) = 2N − 1.

1× 2− 1 = 1

37× 2− 1 = 73

397× 2− 1 = 793

3997× 2− 1 = 7993

39997× 2− 1 = 79993

. . .

Formally, the digit reversal of an n-digit number

N =
n−1∑
i=0

di10i, di ∈ {0, 1, 2, . . . , 9}
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is defined by

revn(N) =

n−1∑
i=0

dn−1−i10i.

Leading zeros are allowed. For example, rev3(123) = 321, but rev4(123) =
3210.

The digit reversal of an n-digit number can be computed recursively, by
reversing the first (n − 1) digits, then moving the last digit to the front.
Formally,

revn(10a + b) = 10n−1b + revn−1(a) (0 ≤ a < 10n−1, 0 ≤ b ≤ 9)

with initial condition rev0(0) = 0.

Theorem 1. revn(revn(N)) = N for 0 ≤ N < 10n.

Proof. Let N =
∑n−1

i=0 di10i, where di ∈ {0, 1, 2, . . . , 9}. Then

revn(revn(N)) = revn

(
n−1∑
i=0

di10i

)

= revn

(
n−1∑
i=0

dn−1−i10i

)

=

n−1∑
i=0

dn−1−(n−1−i)10i

=
n−1∑
i=0

di10i

= N.

�

Theorem 2. If S = 10n−1 and 0 ≤ N ≤ S then revn(S−N) = S−revn(N).

Proof. Let N =
∑n−1

i=0 di10i, and note that S =
∑n−1

i=0 9 · 10i. Therefore

revn(S −N) = revn

(
n−1∑
i=0

9 · 10i −
n−1∑
i=0

di10i

)

= revn

(
n−1∑
i=0

(9− di) · 10i

)

=

n−1∑
i=0

(9− dn−1−i) · 10i

=
n−1∑
i=0

9 · 10i −
n−1∑
i=0

dn−1−i10i

= S − revn(N).
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The reader is familiar with the standard algorithm for adding positive
integers, but we will give a formal description. Let A and B be nonnegative
integers whose decimal expansions are A =

∑
i ai10i and B =

∑
i bi10i

respectively. Suppose that the sum A + B has decimal expansion A + B =∑
i di10i. Then

(1) ai + bi + ci−1 = di + 10ci

where c−1 = 0 and ci ∈ {0, 1} depending on whether a carry occurred in the
column for 10i.

If A = B then the equation can be written as

(2) 2ai + ci−1 = di + 10ci.

Theorem 3. The only solution to revn(N) = 2N with 0 ≤ N < 10n is
N = 0.

Proof. The proof is by induction on n. The case n = 0 is trivial.
Let N =

∑n−1
i=0 ai10i where ai ∈ {0, 1, 2, . . . , 9}, and suppose that revn(N) =

2N . By equation 2,
2a0 = an−1 + 10c0

and
2an−1 + cn−2 = a0.

Solving this system for a0 and an−1 yields

a0 = (20c0 − cn−2)/3

and
an−1 = (10c0 − 2cn−2)/3.

Since c0 ∈ {0, 1} and cn−2 ∈ {0, 1}, one obtains integer values for a0 and
an−1 only when c0 = cn−2 = 0, hence a0 = an−1 = 0. Since the first and
last digits of N are zeros, it follows that

revn−2(N/10) = 2(N/10).

By the induction hypothesis, N/10 = 0, hence N = 0. �

Theorem 4. If N = 4 · 10n−1 − 3 then revn(N) = 2N − 1.

Proof. The cases n = 1 and n = 2 are easy to check, so we suppose that
n ≥ 3. The decimal expansion of

N = 4 · 10n−1 − 3

is
N = 3999...97

with n− 2 nines. But

2N − 1 = 8 · 10n−1 − 7

and its decimal expansion is

2N − 1 = 7999...93
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with n− 2 nines. Therefore, revn(N) = 2N − 1. �

Theorem 5. If revn(N) = 2N−1 and 0 ≤ N < 10n then N = 4 ·10n−1−3.

Proof. This can be verified for n ≤ 2 by brute force, so let us assume that
n ≥ 3.

Let N =
∑n−1

i=0 ai10i where ai ∈ {0, 1, 2, . . . , 9}, and suppose that revn(N) =
2N − 1. If a0 = 0 then an−1 = 9; but this is impossible, since revn(N) > N .

Since a0 ≥ 1, equation 2 implies that

2a0 − 1 = an−1 + 10c0

and
2an−1 + cn−2 = a0.

Solving this system for a0 and an−1 yields

a0 = (20c0 − cn−2 + 2)/3

and
an−1 = (10c0 − 2cn−2 + 1)/3.

One obtains integer values for a0 and an−1 only when c0 = cn−2 = 1,
hence a0 = 7 and an−1 = 3. Therefore, there exists an integer A such that
0 ≤ A < 10n−2 and

N = 3 · 10n−1 + 10A + 7.

Since revn(N) = 2N − 1, it follows that

(3) 2N − 1 = 7 · 10n−1 + 10B + 3

where B = revn−2(A).
Eliminating N from the two equations yields

0 = −10n−1 + 20A− 10B + 10

which can be rewritten as

2(S −A) = (S −B)

where S = 10n−2 − 1.
By Theorem 2,

S −B = S − revn−2(A) = revn−2(S −A)

so Theorem 3 implies that S −A = 0. Therefore (by equation 3)

N = 3 · 10n−1 + 10(10n−2 − 1) + 7 = 4 · 10n−1 − 3.
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