login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160834
Expansion of: (1+62*x+567*x^2+1068*x^3+503*x^4+54*x^5+x^6)/(1-x)^7.
1
1, 69, 1029, 6857, 29273, 94589, 252813, 589009, 1236913, 2394805, 4343637, 7467417, 12275849, 19429229, 29765597, 44330145, 64406881, 91552549, 127632805, 174860649, 235837113, 313594205, 411640109, 534006641, 685298961
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
G.f.: (1+62*x+567*x^2+1068*x^3+503*x^4+54*x^5+x^6)/(1-x)^7.
a(n) = 1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n+74)/15. - R. J. Mathar, Sep 17 2011
a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - Wesley Ivan Hurt, Oct 01 2021
MAPLE
A160834:=n->1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n+74)/15: seq(A160834(n), n=0..30); # Wesley Ivan Hurt, Mar 04 2014
MATHEMATICA
Table[1 + n*(n + 1)*(47*n^4 + 104*n^3 + 171*n^2 + 114*n + 74)/15, {n, 0, 30}] (* Wesley Ivan Hurt, Mar 04 2014 *)
PROG
(Magma) [1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n+74)/15: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
(PARI) for(n=0, 30, print1(1+n*(n+1)*(47*n^4+104*n^3+171*n^2+114*n +74)/15, ", ")) \\ G. C. Greubel, Apr 28 2018
CROSSREFS
Sequence in context: A160816 A160817 A160836 * A160833 A160831 A254683
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved