login
A160817
Expansion of (1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5+x^6)/(1-x)^7.
1
1, 69, 1026, 6809, 28973, 93389, 249138, 579601, 1215745, 2351605, 4261962, 7322217, 12030461, 19031741, 29144522, 43389345, 63019681, 89554981, 124815922, 170961849, 230530413, 306479405, 402230786, 521716913, 669428961
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
a(n) = 61*n^6/20 +151*n^5/15 +37*n^4/2 +19*n^3 +249*n^2/20 +74*n/15 +1. - R. J. Mathar, Sep 17 2011
MATHEMATICA
CoefficientList[Series[(1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5 +x^6)/(1-x)^7, {x, 0, 50}], x] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 69, 1026, 6809, 28973, 93389, 249138}, 50] (* G. C. Greubel, Apr 26 2018 *)
PROG
(Magma) [61*n^6/20 +151*n^5/15 +37*n^4/2 +19*n^3 +249*n^2/20 +74*n/15 +1: n in [0..30]]; // Vincenzo Librandi, Sep 18 2011
(PARI) x='x+O('x^30); Vec((1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5 + x^6)/(1-x)^7) \\ G. C. Greubel, Apr 26 2018
CROSSREFS
Sequence in context: A160788 A160815 A160816 * A160836 A160834 A160833
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved