The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A160817 Expansion of (1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5+x^6)/(1-x)^7. 1

%I

%S 1,69,1026,6809,28973,93389,249138,579601,1215745,2351605,4261962,

%T 7322217,12030461,19031741,29144522,43389345,63019681,89554981,

%U 124815922,170961849,230530413,306479405,402230786,521716913,669428961

%N Expansion of (1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5+x^6)/(1-x)^7.

%C Source: the De Loera et al. article and the Haws website listed in A160747.

%H Vincenzo Librandi, <a href="/A160817/b160817.txt">Table of n, a(n) for n = 0..10000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).

%F a(n) = 61*n^6/20 +151*n^5/15 +37*n^4/2 +19*n^3 +249*n^2/20 +74*n/15 +1. - _R. J. Mathar_, Sep 17 2011

%t CoefficientList[Series[(1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5 +x^6)/(1-x)^7, {x, 0, 50}], x] (* or *) LinearRecurrence[{7,-21,35,-35,21,-7,1}, {1, 69, 1026, 6809, 28973, 93389, 249138}, 50] (* _G. C. Greubel_, Apr 26 2018 *)

%o (MAGMA) [61*n^6/20 +151*n^5/15 +37*n^4/2 +19*n^3 +249*n^2/20 +74*n/15 +1: n in [0..30]]; // _Vincenzo Librandi_, Sep 18 2011

%o (PARI) x='x+O('x^30); Vec((1+62*x+564*x^2+1041*x^3+476*x^4+51*x^5 + x^6)/(1-x)^7) \\ _G. C. Greubel_, Apr 26 2018

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Nov 18 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 06:52 EST 2021. Contains 349543 sequences. (Running on oeis4.)