login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160837 G.f.: (1+38*x+262*x^2+475*x^3+254*x^4+37*x^5+x^6)/(1-x)^7. 1
1, 45, 556, 3457, 14317, 45565, 120772, 280001, 586225, 1132813, 2052084, 3524929, 5791501, 9162973, 14034364, 20898433, 30360641, 43155181, 60162076, 82425345, 111172237, 147833533, 194064916, 251769409, 323120881, 410588621, 516962980 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Source: the De Loera et al. article and the Haws website listed in A160747.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

From R. J. Mathar, Dec 16 2009: (Start)

a(n) = 1+24/5*n+38/3*n^3+207/20*n^2+61/6*n^4+68/15*n^5+89/60*n^6.

a(n) = 1+ n*(n+1)*(89*n^4+183*n^3+427*n^2+333*n+288)/60. (End)

MATHEMATICA

CoefficientList[Series[(1+38x+262x^2+475x^3+254x^4+37x^5+x^6)/(1-x)^7, {x, 0, 40}], x] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 45, 556, 3457, 14317, 45565, 120772}, 40] (* Harvey P. Dale, Nov 27 2016 *)

PROG

(MAGMA) [1+ n*(n+1)*(89*n^4+183*n^3+427*n^2+333*n+288)/60: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011

(PARI) x='x+O('x^30); Vec((1+38*x+262*x^2+475*x^3+254*x^4+37*x^5+x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018

CROSSREFS

Sequence in context: A223047 A147842 A027783 * A160838 A189350 A090024

Adjacent sequences:  A160834 A160835 A160836 * A160838 A160839 A160840

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Nov 18 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 02:06 EDT 2021. Contains 343808 sequences. (Running on oeis4.)