login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160838
G.f.: (1+38*x+263*x^2+484*x^3+263*x^4+38*x^5+x^6)/(1-x)^7.
1
1, 45, 557, 3473, 14417, 45965, 121997, 283137, 593281, 1147213, 2079309, 3573329, 5873297, 9295469, 14241389, 21212033, 30823041, 43821037, 61101037, 83724945, 112941137, 150205133, 197201357, 255865985, 328410881, 417348621, 525518605
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website listed in A160747.
FORMULA
a(n) = 68*n^6/45 +68*n^5/15 +91*n^4/9 +38*n^3/3 +467*n^2/45 +24*n/5 +1. - R. J. Mathar, Sep 11 2011
a(0)=1, a(1)=45, a(2)=557, a(3)=3473, a(4)=14417, a(5)=45965, a(6)=121997, a(n)=7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)- 7*a(n-6)+a(n-7). - Harvey P. Dale, Sep 17 2011
MATHEMATICA
CoefficientList[Series[(1+38x+263x^2+484x^3+263x^4+38x^5+x^6)/(1-x)^7, {x, 0, 30}], x] (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {1, 45, 557, 3473, 14417, 45965, 121997}, 30] (* Harvey P. Dale, Sep 17 2011 *)
PROG
(Magma) [68*n^6/45 +68*n^5/15 +91*n^4/9 +38*n^3/3 +467*n^2/45 +24*n/5 +1: n in [0..30]]; // Vincenzo Librandi, Sep 19 2011
(PARI) x='x+O('x^30); Vec((1+38*x+263*x^2+484*x^3+263*x^4+38*x^5+x^6)/(1-x)^7) \\ G. C. Greubel, Apr 28 2018
CROSSREFS
Sequence in context: A349849 A027783 A160837 * A189350 A090024 A282767
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved