login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Fifth partial sums of sixth powers (A001014).
7

%I #26 Jun 13 2015 00:55:24

%S 1,69,1064,8736,49350,216342,787968,2489448,7024407,18074875,43072848,

%T 96186272,203145852,408774588,788378400,1464523344,2631173181,

%U 4587701601,7785938104,12894168000,20882898530,33138238770

%N Fifth partial sums of sixth powers (A001014).

%H Luciano Ancora, <a href="/A254683/b254683.txt">Table of n, a(n) for n = 1..1000</a>

%H Luciano Ancora, <a href="/A254640/a254640_1.pdf">Partial sums of m-th powers with Faulhaber polynomials</a>

%H Luciano Ancora, <a href="/A254647/a254647_2.pdf"> Pascal’s triangle and recurrence relations for partial sums of m-th powers </a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).

%F G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^12.

%F a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(5 + 2*n)*(- 3 + 5*n + n^2)*(4 + 15*n + 3*n^2)/332640.

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^6.

%e First differences: 1, 63, 665, 3367, 11529, ... (A022522)

%e --------------------------------------------------------------------------

%e The sixth powers: 1, 64, 729, 4096, 15625, ... (A001014)

%e --------------------------------------------------------------------------

%e First partial sums: 1, 65, 794, 4890, 20515, ... (A000540)

%e Second partial sums: 1, 66, 860, 5750, 26265, ... (A101093)

%e Third partial sums: 1, 67, 927, 6677, 32942, ... (A254640)

%e Fourth partial sums: 1, 68, 995, 7672, 40614, ... (A254645)

%e Fifth partial sums: 1, 69, 1064, 8736, 49350, ... (this sequence)

%t Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (5 + 2*n) (- 3 + 5*n + n^2) (4 + 15 n + 3 n^2)/332640, {n,22}] (* or *)

%t CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^12, {x,0,21}], x]

%Y Cf. A000540, A001014, A022522, A101093, A254640, A254645, A254681, A254682, A254684.

%K nonn,easy

%O 1,2

%A _Luciano Ancora_, Feb 12 2015